
Getting to know you: general and specific neural

computations for learning about people
Damian A. Stanley

Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA

Correspondence should be addressed to Damian A. Stanley, California Institute of Technology, MC 228-77, 1200 East California Boulevard, Pasadena, CA
91125, USA. E-mail: dstanley@caltech.edu.

Abstract

Learning about other peoples’ attributes, e.g. whether an individual is generous or selfish, is central to human social cognition.
It is well documented that a network of cortical regions is reliably activated when we engage social processes. However, little
is known about the specific computations performed by these regions or whether such processing is specialized for the social
domain. We investigated these questions using a task in which participants (N¼26) learned about four peoples’ generosity by
watching them choose to share money with third party partners, or not. In a non-social control condition, participants learned
the win/loss rates of four lotteries. fMRI analysis revealed learning-related general (socialþnon-social) prediction error signals
in the dorsomedial and dorsolateral prefrontal cortices (bilaterally), and in the right lateral parietal cortex. Socially specific (so-
cial>non-social) prediction error signals were found in the precuneus. Interestingly, the region that exhibited social predic-
tion errors was a distinct subregion of the area in the precuneus and posterior cingulate cortex that exhibited a commonly re-
ported main effect of higher overall activity for social vs non-social stimuli. These findings elucidate the domain—general
and—specific computations underlying learning about other people and demonstrate the increased explanatory power of
computational approaches to social cognition.
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Introduction

Learning about other peoples’ behavioral dispositions and in par-
ticular their intentions toward others is crucial for survival in our
social world. This ability requires that we maintain representa-
tions of other individuals that encode these characteristics and
update them when we receive novel information. A network of
cortical brain regions, including the temporal parietal junction
(TPJ), precuneus/posterior cingulate cortex (Pc/PCC), dorsomedial
prefrontal cortex (dmPFC) and the temporal poles (TP), has been
consistently implicated by studies involving the representation
of others’ beliefs, preferences and intentions (for reviews see
Frith and Frith, 2006; Behrens et al., 2009; Van Overwalle, 2009;
Mar, 2011; Kennedy and Adolphs, 2012; Olson et al., 2013).
Disruption of components of this network results in impairments
of social cognition (Todorov and Olson, 2008; Krajbich et al., 2009;
Young et al., 2010; Olson et al., 2013); abnormal functioning may

underlie social impairments associated with autism spectrum
disorder (Castelli et al., 2002; Kennedy et al., 2006; Kennedy and
Courchesne, 2008; Kana et al., 2009); and gray matter volume in
regions of this network reflects social network size (Lewis et al.,
2011; Sallet et al., 2011). However, much remains unknown about
the specific computations performed by this network’s constitu-
ent components.

Most research on the neuroscience of representing other
people has focused on the assignment of specific subprocesses
(e.g. the representation of beliefs vs preferences) to specific
brain regions. The paradigms used often examine the represen-
tation of other people in isolated, static social situations, with
little ambiguity (but see Jenkins and Mitchell, 2010) and no re-
quirement for maintenance or updating through experience.
This is in stark contrast to the real-world, in which representa-
tions of other people are uncertain and dynamic, evolving over
time as we observe their behavior and revise our understanding.
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Two notable exceptions are the literatures on impression for-
mation and computational modeling of social learning.1,2

Neuroimaging studies of impression formation have shown
that Blood-Oxygen Level Dependent (BOLD) activity in regions of
the social cognition network, as well as dorsolateral prefrontal
and dorsolateral parietal cortices (dlPFC and dlPC, respectively), is
greater when presented with impression-inconsistent (compared
with impression-consistent) information about a social target
(Cloutier et al., 2011a,b; Ma et al., 2012; Bhanji and Beer, 2013;
Mende-Siedlecki et al., 2013)—(but see Ames and Fiske, 2013). In
one elegant study, Schiller et al. (2009) demonstrated that BOLD
activity in the PCC was higher for pieces of information that were
more heavily weighted by participants during subsequent ratings
of whether or not they ‘liked’ a social target and also scaled with
the magnitude of the participant’s ratings. Although these data
provide compelling evidence for the general involvement of these
regions in impression formation, for the most part (with the pos-
sible exceptions of Bhanji and Beer, 2013 and Schiller et al., 2009)
they cannot speak to the specific computations being performed.
In addition, none of them include a non-social control condition
and therefore none of them is able to address domain specificity.

The few studies that have directly investigated the neural
computations underlying social learning (Behrens et al., 2008;
Hampton et al., 2008; Yoshida et al., 2010; Suzuki et al., 2012;
Boorman et al., 2013) have focused on two computational signals
necessary for learning; estimates of the probability that another
person will perform a given action (e.g. how predictable they are
in a given situation), and estimates of prediction errors (PEs), i.e.
how surprising an individual’s behavior is, given previous esti-
mates of their predictability. To identify neural signals, such as
these, it is crucial to employ paradigms that require participants
to maintain and revise their representations of other people
given new information. These studies have tied BOLD correlates
of social predictability and PE to a number of regions including
the medial prefrontal cortex (mPFC; dorsal and ventral), super-
ior temporal sulcus (STS)/TPJ and the right TP. Unfortunately, as
with the impression formation literature, the majority of these
studies have lacked non-social learning conditions and cannot
speak to social specificity (but see Boorman et al., 2013). A fur-
ther concern is that these studies have generally confounded
learning about reward to oneself with learning about the traits
of another person, making it difficult to distinguish whether
any putative neural signal is related to reward likelihood or the
other person’s character.

In this study, to identify neural signals specific for social
learning we used a paradigm in which participants learned
about other real people (‘Gifters’) by observing them make gen-
erous or selfish decisions concerning real third party individuals
(Figure 1a). We focused on generosity because of the ubiquity of
altruistic behavior in human societies (Henrich et al., 2001;
Camerer, 2003), suggesting that generosity may be a fundamen-
tal attribute that we evaluate in others. Critically, participants
also completed a computationally matched, non-social learning
condition and were not rewarded during learning.

Materials and methods
MRI participants

Thirty participants (median age¼ 23.5 years, range¼ 19–37; all
female to match the gender of the ‘Gifters’) took part in the fMRI
study, four were excluded from the final analysis (1 for exces-
sive head motion and 3 because they did not meet behavioral
criterion). All participants were right-handed and had normal or
corrected-to-normal vision. Participants were recruited through
the subject pool of the Social Sciences Experimental Laboratory
at the California Institute of Technology (which included par-
ticipants from Pasadena City College and the surrounding area)
and were paid $40/h as well as earnings from the experiment
(up to $40 additional; see Procedure). All experimental proced-
ures were undertaken with the understanding and written con-
sent of each participant and were approved by the California
Institute of Technology Institutional Review Board.

Procedure

Participants were scanned on two separate days (intersession
interval median¼ 2 days, range¼ 1–4) so as to limit the duration
of a single Magnetic Resonance Imaging (MRI) session to<1.5 h.
On the first day, participants were consented, briefed concerning
the nature of the experiment (details later), and then completed
1 structural and 3 functional MRIs. On the second day, partici-
pants again completed 1 structural and 3 functional MRIs, con-
tinuing the experiment where they left off on the first day.

During the briefing, MRI participants were informed that in an
earlier phase of the experiment (see later), four real female3

‘Gifters’ had made a series of economic decisions to share or keep
all of $10 with 48 distinct real partners (i.e. a dictator game;
Forsythe et al., 1994; Kahneman et al., 1986). The MRI participants’
task was to observe these Gifters’ decisions (presented in random
order) and form an estimate of each Gifter’s overall share (or keep;
counterbalanced) percentage. They were aware that all the inter-
actions were real and had actual consequences for the Gifters and
their partners. Finally, they were told they would also be estimat-
ing the overall win (or loss; counterbalanced) percentage of four
Lotteries (represented by pictures of fractals) that generated out-
comes for the same 48 partners (again with real consequences).

Each of the six functional runs contained 64 randomly inter-
mixed trials (8� 4 Gifter and 8� 4 Lottery). Participants learned
about the same Gifters and Lotteries throughout the experi-
ment, always continuing from where they left off in previous
run. On each day, once MRI data collection was complete, par-
ticipants provided a final estimate for each Gifter and Lottery.
To incentivize participants to learn, they were told that at the
end of the experiment they would be rewarded $2.50 for each of
these final estimates that was within 5% of the true share/keep,
or win/loss, percentage. Participants instructed to estimate
share/win percentage on day 1 were instructed to estimate
keep/loss percentage on day 2 and vice versa.

Trial design

On each Gifter trial, participants saw a color photograph repre-
senting one of the four Gifters (identity-to-behavior pairings were
randomly assigned across participants) and had up to 4 s to esti-
mate the overall percentage of the time (0–100% in increments of
10%) that particular Gifter chose to share $10 with their partners

1 Author’s Note: At the time of the design and implementation of this
study (Spring, 2010), much of the literature described here did not
exist. Because of this, we provide a review of the field as it currently
stands, however, we omit what would be post hoc predictions about ex-
pected patterns of BOLD activity. Instead, we reserve discussion of our
results in the context of this literature for the discussion.

2 For the purposes of this article, we use the term ‘social learning’ to spe-
cifically refer to learning about the traits, beliefs and intentions of an-
other person.

3 The gender of participants and Gifters was matched (i.e. all female) to
avoid potential cross gender effects influencing participant learning.
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(Figure 1). To enter their response, participants first adjusted the
percentage number underneath the Gifter’s photo up or down (ini-
tial percentage value was randomized on each trial) using the
index and middle finger of one hand (right/left counterbalanced
across subjects) and then signaled their final answer by pressing a
button with the index finger of the other hand. Once a response
was finalized, the Gifter’s photo disappeared and only the fixation
point remained for the remainder of estimate period. This was fol-
lowed by a 1–5 s (randomized, uniform distribution) inter-
stimulus-interval and then an outcome screen (duration¼ 1 s)
that displayed the Gifter’s actual decision (‘shared’ or ‘kept’) for
that specific partner in green (‘shared’) or red (‘kept’). Finally, trials
were separated by a 1–8 s (randomized, uniform distribution) in-
ter-trial-interval. The procedure for Lottery trials was exactly the
same.

Bayesian learner analysis

To assess learning performance, each participant’s behavioral
data were compared with that of an ideal Bayesian learner. For
each of the four Gifters (and four Lotteries) a Bayesian learner

with a flat prior described by a Beta distribution [i.e.
prior¼Beta(1, 1)] was provided the participant-specific outcome
history (shared¼ 1, kept¼ 0). For these learners, the mean of the
posterior distribution on a given trial t (i.e. the current generos-
ity estimate) is given by the formula:

Estimatet ¼ 1þ numsharest

� �
= 1þ numsharest

� �
þ 1þ numkeepst

� �h i� �
;

in which Estimatet is the generosity estimate following the ob-
servation of outcomet and the variables num_sharest and
num_keepst refer to the total number of times including trial t
that the Gifter has shared or kept, respectively. Once estimates
for each Gifter and Lottery were generated, they were combined
and ordered by trial number. The resulting idiosyncratic series
of estimates were correlated with the participant’s actual
estimates.

Gifter behavior data collection

Prior to the fMRI experiment, descriptive information (age, gen-
der, years of higher education, city of birth and a movie they

Fig. 1. (a) Schematic of experimental design. Participants learned about the generosity of four distinct ‘Gifters’ as each made single-shot decisions to ‘Share’ or ‘Keep’

$10 with 48 different partners [a.k.a. a ‘Dictator’ game (Kahneman et al., 1986; Forsythe et al., 1994)]. On each trial, participants first estimated the overall percentage of

the time that the current Gifter shared (or kept) $10 with their partners (0–100% in increments of 10%; Gifters were preselected to have a range of sharing rates: 8%,

43%, 58% and 83%). Participants then saw the actual outcome (shared/kept) for that trial. To enable the identification of neural mechanisms specific for social learning,

participants also learned about the overall percentage that four matched Lotteries (represented by fractals) generated ‘Wins’ or ‘Losses’ for the same partners (non-so-

cial control condition). Participants were incentivized to learn, but did not themselves receive rewards during the experiment (see Methods). (b) Average participant es-

timates for the four Gifters (left) and the corresponding Lotteries (right). Solid colored lines indicate mean participant estimate of each Gifter Share, and Lottery Win,

percentage over the course of the experiment with the surrounding transparency indicating standard error across participants (N¼26). Dotted lines indicate actual

Gifter Share and Lottery Win percentages. Circles indicate participant final estimates (outside the scanner) and standard errors on day 1 (following trial 24) and day 2

(following trial 48) of the experiment. No significant differences in learning for Gifters compared with Lotteries were identified (see Results).

D. A. Stanley | 3

 at C
alifornia Institute of T

echnology on M
arch 31, 2016

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: -
Deleted Text: econd
Deleted Text: ec
Deleted Text: -
Deleted Text: econd
Deleted Text: :
Deleted Text: to
Deleted Text: 4 
Deleted Text: 4 
Deleted Text: (
Deleted Text: )
Deleted Text: ,
Deleted Text: :
Deleted Text: ,
http://scan.oxfordjournals.org/


would highly recommend) was collected from 48 partners (20 fe-
male). Partners were paid $5 each for their participation.
Subsequently, a non-overlapping pool of eight female Gifters
viewed the descriptive information of each of the 48 partners
while making a decision to share ($4:$6, $5:$5 or $6:$4 splits)
with the partner or keep the whole $10 for themselves [a.k.a. a
dictator game (Kahneman et al., 1986; Forsythe et al., 1994)].
Gifters were paid $10 for participation. When the experiment
was over, one random trial was selected and both the Gifter and
the partner from that trial received the actual monetary out-
come of the trial. Gifter choice data were subsequently analyzed
and 4/8 Gifters with a range of sharing rates (8%, 43%, 58% and
83%) were selected to be the Gifters that fMRI participants
learned about.

MRI data acquisition

Imaging data were collected at the Caltech Brain Imaging
Center using a Siemens 3T Trio scanner and a Siemens 8-chan-
nel phased array head coil. Imaging sessions began with a T1-
weighted MPRAGE anatomical scan collected in the sagittal
plane (176 slices, Repetition Time (TR)¼ 1.5 s, Echo Time
(TE)¼ 3.05 ms, slice thickness¼ 1 mm, inplane reso-
lution¼ 1� 1 mm, flip angle¼ 10�, Field of view (FOV)¼ 256
mm2, number of averages¼ 2). Following this, T2*-weighted gra-
dient-echo echo-planar images (EPI) with BOLD contrast were
acquired in three scans (duration� 13 m 48 s, TR¼ 2.75 s,
TE¼ 25 ms, flip angle¼ 80�, slice thickness¼ 3 mm, inplane reso-
lution¼ 3� 3 mm, FOV¼ 192 mm). We collected 44 slices with
an oblique orientation of 30� to the anterior commissure-poster-
ior commissure line. Slice acquisition order was interleaved
with no gap and the first two acquisitions of each functional
run were discarded. Foam inserts were used to restrict partici-
pant head motion. Stimuli presented using MATLAB (The
MathWorks, Natick, MA) and PsychToolBox-3 (Brainard, 1997;
Pelli, 1997; Kleiner et al., 2007), were projected onto a screen at
the back of the MRI machine and viewed through a mirror.
Responses were collected using two 2-button response boxes
(Current Designs, Philadelphia, PA).

Imaging data preprocessing

Imaging data were preprocessed and analyzed using SPM8
(Wellcome Trust Centre for Neuroimaging, University College
London, UK). Functional data from each scan were corrected for
slice acquisition time, then motion-corrected (3d affine trans-
formation) to the first image of the scan. Following this, the
data underwent normalization to the Montreal Neurological
Institute’s standard EPI template and spatial smoothing (3d
Gaussian filter, 8 mm Full width at half maximum). Finally, we
applied a high-pass temporal filter (width¼ 128 s) to the data to
remove low frequency noise associated with scanner drift.

fMRI data analysis

For each participant, to identify regions with differential re-
sponses to Gifters and Lotteries we estimated a GLM with AR(1)
and the following regressors of interest:

R1) a boxcar indicator function for the Gifter estimation screen
(duration¼ reaction time¼ time between trial onset and the
first key press).

R2) a parametric modulator function of estimated Gifter predict-
ability: a transformation of participants’ estimates to a V-
shaped function that increased with distance from the point

at which Gifter behavior was minimally predictable,
P(share)¼ 0.5. Thus,

PredðtÞ ¼ absðP shareðtÞ
� �

� 0:5Þ

In which Pred(t) is the estimated predictability on trial t and
P(share(t)) is the participants’ estimated probability the Gifter is
a sharer on trial t.

R3) a boxcar indicator function for the outcome screen
(duration¼ 1 s).

R4) a parametric modulator function of participant state predic-
tion error (SPE) (Gläscher et al., 2010) at outcome.

SPEðtÞ ¼ absðOutcome� Pðshare tð ÞÞÞ

R5–R8) The equivalent predictors for Lottery trials (with win/
loss substituted for share/keep).

In addition, the General Linear Model (GLM) included 6 head-
motion regressors, 6 constant regressors (1 per scan), a regres-
sor for response-related finger movements (a boxcar covering
the period between the first response-related button press and
the button press indicating the final response) and a regressor
for missed trials (median¼ 0.2% of all trials; range¼ 0–9.4%).
The regressors of interest, motor movements and missed trials
were convolved with a canonical double-gamma hemodynamic
response function (SPM8).

Because we were interested in determining whether there
were regions selectively involved in the processing of Gifter at-
tributes, we computed each of the following single-subject con-
trasts between the two conditions: the main effect contrast of
Gifter indicators> Lottery indicators during the estimate
(R1>R5) and outcome (R3>R7) periods and the parametric ef-
fects contrasts of Gifter> Lottery for the modulators of
Predictability (R2>R6) and SPE (R4>R8).

Second-level group statistics were calculated using one-sam-
ple t-tests of the beta weights from the first-level contrasts. For in-
ference purposes, we applied a voxel-wise statistical threshold of
P< 0.005, and then applied a whole-brain cluster-correction
(threshold: P< 0.05). For subcortical regions-of-interest (e.g. the
caudate), we used small-volume-correction based on anatomical
ROIs taken from the automated anatomical labeling (AAL) Atlas
(Tzourio-Mazoyer et al., 2002). Finally, to identify regions com-
monly activated by both Gifter and Lottery trials we used min-
imum statistic conjunction analyses (Nichols et al., 2005), and set
cluster thresholds to the larger of those estimated for the two stat-
istical maps contributing to the conjunction (thereby remaining
conservative in our inference).

Precuneus ROI analysis

When considering contrasts of parametric regressors (i.e. Gifter
SPE> Lottery SPE), different underlying patterns of BOLD response
can lead to voxels/clusters being deemed significant. To examine
the response patterns that gave rise to significant clusters in the
parametric contrast of [Gifter SPE> Lottery SPE], we first defined
individual functional ROIs for each participant using a leave-one-
out procedure. For each participant, the parametric contrast of
[Gifter SPE> Lottery SPE] was calculated at the group-level for the
remaining 25 participants. That statistical parametric map was
then used to define a functional Region-of-Interest (ROI) for that
participant. A separate GLM was estimated for each participant in
which trials of low, medium and high predictability and SPE were
modeled as distinct regressors. To remain unbiased with regards
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to the relationship between behavioral measures (i.e. predictabil-
ity and SPE) and the distribution of BOLD responses, the data were
first split into approximate tertiles to ensure that there were a
similar number of trials in each bin (because the data were dis-
crete, tertile split points were restricted to being between SPE val-
ues). For predictability, the resulting mapping of low, medium and
high predictability to participant share likelihood estimates was:
low¼ [0.4, 0.5, 0.6] (average number of trials per partici-
pant¼ 125.4); medium¼ [0.2, 0.3, 0.7, 0.8] (average number of trials
per participant¼ 143.2); high¼ [0, 0.1, 0.9, 1] (average number of
trials per participant¼ 112.6). For SPE, the resulting mapping of
low, medium and high SPE to participant SPEs was: low¼ [0, 0.1]
(average number of trials per participant¼ 119.7); medium¼ [0.2,
0.3, 0.4, 0.5] (average number of trials per participant¼ 146.2);
high¼ [0.6, 0.7, 0.8, 0.9, 1] (average number of trials per partici-
pant¼ 115.23). For each participant a GLM with AR(1) and six
regressors-of-interest (low/medium/high�predictability/SPE) as
well as regressors for motion, missed trials and response-related
finger movement was estimated. Then, for each participant and
ROI the beta values for each regressor of interest in each voxel
were extracted and averaged together. Finally, data for each ROI
and regressor of interest were averaged across participants (Figure
3; top right panel).

Results
Behavior

To assess learning, we compared each participant’s estimates
to those of a purely Bayesian learner exposed to the same his-
tory of outcomes (see Methods for details). Three participants
whose estimates across the whole experiment had a correlation
of<0.2 (Pearson’s r) with those of the Bayesian learner were
classified as poor learners and were excluded from further ana-
lysis. For the remaining participants (N¼ 26), the behavioral
data indicated that participants reliably learned the overall
share/win rates in both Gifters and Lottery conditions. Figure 1b
displays the mean participant estimates over the course of the
experiment for each of the four Gifters (left panel) and the cor-
responding Lotteries (right panel). Note that average participant
estimates (solid lines) converge toward the true share/win rate
(dotted lines) for each of the four Gifters and the corresponding
Lotteries. The filled circles indicate the mean of the partici-
pants’ final incentivized estimates (outside the scanner) for
each Gifter and Lottery after trial 24 (day 1) and trial 48 (day 2).
To assess performance, for each participant we calculated the
difference between the participant’s final incentivized esti-
mates and the actual share/win rates for each Gifter and
Lottery. Statistical testing revealed that none of the average dif-
ferences (across participants) between participant estimate and
actual share/win rates was significant (at P< 0.05, Bonferroni-
corrected, one-sample t-tests).

We also assessed whether there were any significant system-
atic differences between learning in the Gifter and Lottery condi-
tions. For each participant, the signed difference between the
participant’s actual estimates on each trial and those of the ideal
Bayesian observer was calculated for each Gifter and Lottery and
summed across trials, providing a single number for each partici-
pant, Gifter and Lottery. These numbers were entered into a 2
(Condition: Gifter/Lottery)� 4 (Share/Win Rate: 8%, 43%, 58%, 83%)
repeated-measures ANOVA with Participant as a random factor.
This analysis revealed that there was no main effect of Condition
[F(1,75)¼ 0.12] though the main effect of Rate was trending
[F(3,75)¼ 2.32, P¼ 0.08] —reflecting the fact that for both extreme

Rates (8 and 83%) the difference between the ideal Bayesian esti-
mates and participant estimates were of equal but opposite mag-
nitude (i.e. Bayesian observer estimates were quicker to
asymptote than those of participants in both conditions).
Importantly, there was no significant interaction between
Condition and Rate [F(3,75)¼ 1.22, P¼ 0.31]. To ensure that there
were no significant systematic learning differences in early trials,
we repeated this analysis for trials in the first half and quarter
of the experiment. In both cases, there was no main effect of
Condition [Ffirst_half(1,75)¼ 0.04, P¼ 0.84; Ffirst_quarter(1,75)¼ 0.29,
P¼ 0.60] but the main effect of Rate was stronger [Ffirst_half(3,75)¼
3.84, P¼ 0.01; Ffirst_quarter(3,75)¼ 7.35, P< 0.001]. Importantly, there
was no interaction between Condition and Rate [Ffirst_half(3,75)¼
0.57, P¼ 0.64; Ffirst_quarter(1,75)¼ 0.3, P¼ 0.82]. These analyses indi-
cate that observed differences in BOLD signal between the two
conditions was not likely due to discrepancies in task difficulty.

Neural correlates of social processing

Main effects. To identify regions in which there was a main ef-
fect of social processing, we compared the average response on
Gifter trials to that on Lottery trials, both during the estimate
period (Table 1), and during the outcome period (Table 2; see
also Figure 3, top left and bottom panels). Consistent with the
large body of work on mentalizing and social processing (e.g.
Behrens et al., 2009; Van Overwalle, 2009; Kennedy and Adolphs,
2012), these contrasts identified BOLD activity in a network of
regions previously implicated in social cognition and face per-
ception (including: Pc, TPJ, STS, rFFA, Anterior Temporal Lobe
(ATL), mPFC). The only region to show greater activity for
Lotteries than Gifters at both time points was a swath of ventral
visual cortex (medial to, and not including, the Fusiform Face
Area).

As there were observable differences in which of set of clus-
ters were deemed ‘significant’ at estimate and at outcome, we
further investigated this question using a contrast of contrasts
([GifterEstimate > LotteryEstimate]� [GifterOutcome> LotteryOutcome].
This analysis revealed that BOLD responses in both the left [peak
Montreal Neurological Institute (MNI) XYZ¼�27�1�20; 32 vox-
els, P(cluster)¼ 0.009, small-volume corrected (SVC) for bilateral
amygdalae] and right [peak MNI XYZ¼ 27�7�20; 18 voxels,
P(cluster)¼ 0.021, SVC for bilateral amygdalae] amygdalae were
significantly greater for Gifter (compared with Lottery) outcomes
but did not distinguish between the two conditions during esti-
mates. Interestingly, this effect was primarily driven by a reduc-
tion/inversion of the response to Lottery outcomes. As the
amygdalae are known be involved in the processing of social
stimuli, coding of saliency and learning (e.g. Adolphs, 2010), this
could be indicative of a decreased role for the amygdala in non-
social outcome processing. However, given the lack of evidence
for parametric modulation in the amygdalae in either condition,
we refrain from drawing any strong conclusions. There were also
two clusters in which responses were higher for the Lottery con-
dition. In a large swath of occipital-parietal cortex [peak MNI
XYZ¼ 45�79 7; 3148 voxels, P(cluster)< 0.001, whole-brain cor-
rected], the BOLD response showed higher responses to Lotteries
than Gifters during outcomes but not during estimates. In bilat-
eral ventral temporal cortex, BOLD responses were higher for
Lotteries than Gifters at both estimate and outcome but signifi-
cantly more so at estimate [peak MNI XYZ¼ 30�61�5; 389 vox-
els, P(cluster)< 0.001, whole-brain corrected]. The diffuseness of
these responses (they cover many brain regions known to per-
form distinct functions), and the lack of parametric modulation,
suggests they may be related to some large-scale modulatory
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process (e.g. attention) but makes their interpretation difficult.
Because we focus on specific computations related to learning,
we mention these main effect findings here for completeness,
but do not discuss them further.

Parametric effects. We were specifically interested in identifying
BOLD activity that varied parametrically with participants’ trial-
to-trial learning about Gifter behavior. With this in mind, we
searched for parametric signals that reflected how predictable
participants believed Gifters’ generosity to be at the time of esti-
mation (i.e. predictability), and the magnitude of participant
surprise at Gifter behavior when the Gifter’s choice was re-
vealed at outcome (i.e. state or action PE; Gläscher et al., 2010;
Suzuki et al., 2012).4 Importantly, our Lottery control condition
allowed us to identify regions in which signals reflecting pre-
dictability and SPE were specific for learning about people.

Neural correlates of predictability. At the time when participants
entered their estimate, we were specifically interested in

identifying brain regions with signals that reflected participants’
beliefs about how predictable Gifters’ behavior and Lottery payoffs
were, i.e. Gifter/Lottery predictability (see Methods). This signal
was high when participants believed Gifter and Lottery behavior
was highly deterministic (i.e. when their estimate of overall Gifter/
Lottery outcome probability was closer to either 0 or 100%), and
lowest when they believed Gifter and Lottery behavior was purely
random (i.e. when their estimate was 50%).5 We first examined
the conjunction of Gifter and Lottery predictability to identify re-
gions in which neural activity reflected domain general estima-
tions. We found a number of regions in which BOLD activity was
positively correlated with both Gifter and Lottery predictability
(Figure 2 and Table 3) —i.e. the more predictable the participant
believed a Gifter or Lottery to be, the higher the BOLD signal.
We next investigated whether BOLD activity in any region select-
ively represented predictability for Gifters and not
Lotteries (and vice versa). No clusters of BOLD activity survived
our whole-brain-corrected cluster threshold for either contrast
([Gifterpredictability> Lotterypredictability] or [Lotterypredictability>

Gifterpredictability]). Finally, no regions were found to correlate nega-
tively with predictability in either condition.

Neural correlates of SPE. During the outcome period, we looked
for signals that could be used to update a neural representation
of Gifters’ generosity and Lotteries’ payoff likelihood, given the
trial outcome and the participant’s estimate at the beginning of
the trial, i.e. a PE or surprise signal. Because our participants
were estimating stimulus-outcome transition probabilities and
did not receive rewards from outcomes themselves, we used

Fig. 2. BOLD signals reflecting shared learning computations for social and non-social targets. Top: Brain regions in which BOLD activity at the time of estimate corre-

lated with trial-to-trial variation in participant estimates of the predictability of Gifter and Lottery behavior—i.e. the conjunction [Gifterpredictability & Lotterypredictability].

Bottom: Brain regions in which BOLD activity at the time of outcome correlated with trial-to-trial variation in participant SPE for both Gifter and Lottery outcomes—i.e.

the conjunction of [GifterSPE & LotterySPE]. Statistical maps were thresholded at P<0.005 (voxel-wise) and whole-brain cluster-correction was applied (P<0.05; see

Methods).

4 Because participants were estimating the likelihood that Gifters were
associated with one outcome or another, and the outcomes had no in-
herent positive or negative value for the participants, we used SPEs
and predictability (a V-shaped function of estimate) rather than reward
PEs and raw estimates. We also investigated whether there were any
regions in which BOLD activity directly reflected participants’ esti-
mates of generosity (in the place of predictability) or signed PEs often
found in studies of reward learning (in the place of SPE). The only sig-
nificant cluster of activity identified was for the contrast of Gifter
PE>Lottery PE and was located in early visual cortex. Given the large
body of evidence on the function of early visual cortex, as well as the
focus of this study on learning in the absence of reward to self, we do
not discuss this result further.

5 Note: predictability need not correspond to what participants would
report were they asked how confident they were in their estimates.
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the SPE (Gläscher et al., 2010; see also action PE, Suzuki et al.,
2012) which, in our paradigm, is the absolute value of the differ-
ence between the outcome value and estimate value. This SPE
is high when the outcome is unexpected (e.g. if a Gifter’s deci-
sion is out of character) and low when it is not.

We first looked for common regions of SPE-related activity
across the Gifter and Lottery conditions ([GifterSPE & LotterySPE];
Figure 2 and Table 3). This conjunction analysis identified four
clusters—dlPFC (bilaterally), dmPFC and right lateral parietal
cortex (left lateral parietal cortex was also present but did not
pass cluster threshold) —in which BOLD activity reflected SPE
for both Gifters and Lotteries. It is noteworthy that Gläscher
et al. (2010) found a similar pattern of activity (see also Suzuki
et al., 2012) that was positively correlated with SPE in their
model-based state-learning condition, which is highly similar
in structure to our Lottery condition.

We were most interested in determining whether there were
any regions in which Gifter SPE was represented and Lottery SPE
was not. We therefore looked for regions in which BOLD activity
was correlated specifically with SPE for Gifters and not with SPE
for Lotteries. The contrast of [GifterSPE> LotterySPE] identified ro-
bust activity in the Pc [Figure 3, top right and bottom panel; peak
MNI XYZ¼ 6�67 31; 394 voxels, P(cluster)< 0.001, whole-brain
corrected] as well as a single cluster covering portions of the right
thalamus [peak MNI XYZ¼ 12�16 13; 49 voxels, P(cluster)¼ 0.012,
SVC for bilateral thalamus] and the right caudate [peak MNI
XYZ¼ 21�16 22; 23 voxels, P(cluster)¼ 0.058, SVC for bilateral
caudate]. Inspection of the pattern of response within the Pc
cluster on low (L), medium (M) and high (H), Gifter and Lottery

SPE trials (Figure 3, top left panel; see Methods for details), veri-
fied that it selectively reflected SPE for Gifters and not Lotteries
(note: this was not the case for the sub-cortical ROIs). These data
suggest a specific role for the Pc in representing when another
person’s behavior is surprising given our prior beliefs about
them, a calculation critical for social learning.

Parametric effects related to social outcomes in the Pc are in a distinct
subregion. Our computational approach enabled us to investi-
gate the extent to which the parametrically varying learning-
related BOLD activity in the Pc (i.e. Gifter SPE) occurred in a spa-
tially distinct region from commonly found BOLD activity in the
Pc/PCC reflecting the main effect of social processing (i.e. the
contrast of [Gifters> Lotteries]) at the time of outcome. This
analysis revealed that the SPE ROI was in a distinct subregion of
the main effect ROI, with the former located entirely within the
Pc, dorsal and posterior to the latter, which spanned the border
into the PCC (Figure 3, bottom panel).

Discussion

This study used a learning paradigm to both identify BOLD sig-
nals that reflect neural computations for learning about other
people and assess their specificity for social learning compared
with learning about non-social contingencies. To answer these
questions, our paradigm directly contrasted learning about
other people to learning in a computationally well-matched
non-social condition. Furthermore, to isolate learning about
other peoples’ generosity from learning about rewards,

Table 1. Main effects at time of estimate

Pk vox MNI

nVox X Y Z Peak vox region (nVox) Other AAL regions> 5 voxels

Main effect of Gifters> Lotteries at time of estimate

2475 42 �52 �20 Fusiform_R(143) Temporal_Mid_R(735), Angular_R(355), Temporal_Inf_R(209),
Temporal_Sup_R(179), Parietal_Inf_R(115), Occipital_Inf_R(104),
Occipital_Mid_R(51), Temporal_Pole_Mid_R(48), Cerebelum_Crus1_R(46),
Cerebelum_6_R(39), SupraMarginal_R(25), Temporal_Pole_Sup_R(6)

1809 6 50 37 Frontal_Sup_Medial_R(388) Frontal_Sup_Medial_L(331), Frontal_Med_Orb_R(155), Frontal_Med_Orb_L(141),
Frontal_Sup_R(132), Cingulum_Ant_R(107), Cingulum_Ant_L(101), Rectus_L(97),
Frontal_Sup_L(77), Rectus_R(56)

1567 �45 �64 19 Temporal_Mid_L(651) Angular_L(173), Occipital_Mid_L(137), Fusiform_L(59), Temporal_Sup_L(52),
Occipital_Inf_L(48), SupraMarginal_L(25), Cerebelum_Crus1_L(24),
Temporal_Inf_L(6)

1028 33 35 �26 Frontal_Inf_Tri_R(234)a Frontal_Inf_Orb_R(215), Frontal_Inf_Oper_R(124), Frontal_Mid_R(124),
Precentral_R(80), Temporal_Pole_Sup_R(58), Temporal_Pole_Mid_R(32),
Insula_R(19), Frontal_Mid_Orb_R(7)

893 0 �52 34 Precuneus_L(268) Precuneus_R(411), Cingulum_Post_L(71), Cingulum_Mid_L(40),
Cingulum_Mid_R(31), Cingulum_Post_R(20), Cuneus_L(14), Cuneus_R(13)

235 �39 14 �20 Temporal_Pole_Sup_L(75) Frontal_Inf_Orb_L(78), Temporal_Inf_L(30), Frontal_Inf_Tri_L(14), Insula_L(12),
Temporal_Pole_Mid_L(8)

156 �33 8 49 Frontal_Mid_L(53) Precentral_L(88), Frontal_Mid_L(53)

Main effect of Lotteries>Gifters at time of estimate

3089 �27 �55 �11 Fusiform_L(222) Lingual_R(308), Occipital_Mid_L(290), Lingual_L(282), Occipital_Mid_R(278),
Fusiform_R(277), Calcarine_L(219), Cerebelum_6_L(134), Cerebelum_6_R(112),
Calcarine_R(95), Cerebelum_4_5_R(79), Occipital_Sup_R(67),
Cerebelum_Crus1_L(55), ParaHippocampal_R(50), Occipital_Sup_L(49),
Occipital_Inf_L(43), Cerebelum_4_5_L(41), Cerebelum_Crus1_R(40),
ParaHippocampal_L(13), Cuneus_R(9), Occipital_Inf_R(7)

aThe peak voxels of these clusters were in regions undefined by AAL (e.g. white matter), so the largest contributing AAL region is reported instead
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participants in this study did not receive rewards during learn-
ing. Our results demonstrate that while there is considerable
overlap between regions of the brain exhibiting learning-related
signals for learning about people and non-social stimuli, there
is also at least one region, the Pc, in which learning-related sig-
nals are restricted to the social domain. Specifically, the BOLD
signal in the Pc at the time of outcome reflected SPEs (i.e. how
surprising participants found the others’ actions; Figure 3) for
people, and not for Lotteries. These findings provide clear evi-
dence that there may be something unique about the neural
computations underlying learning when social entities are
involved.

The question of whether there exist brain regions that are
specifically recruited for the processing of social stimuli has been
extensively debated. One recurrent issue is that previous work
has generally compared average BOLD activity in two or more
conditions (e.g. thinking about people vs non-social control stim-
uli), leaving them open to the criticism that the social conditions
may simply be more salient or require more processing than the
non-social conditions. A major strength of our study is that we
probed for computational signals that parametrically varied with
learning. Specifically, we demonstrated that the BOLD signal in
many brain regions (Table 3) reflected trial-by-trial estimates of

predictability and/or SPE but did not distinguish between Gifter
and Lottery trials. In other words, the parametric BOLD signal in-
dicates they were performing similar computations in both
cases. This suggests that these regions perform general compu-
tations related to learning of stimulus-outcome contingencies
(i.e. they are not specialized for social cognition). In contrast, ac-
tivity in the Pc reflected specific parametric variation for learning
about people and not for learning about non-social targets, sug-
gesting that these computations are specific to social learning.

The robust and selective SPE signal we found for Gifters in the
Pc suggests this region may play a unique role in signaling the
need to update one’s mental representation of another person’s
character. Previous work has implicated the Pc and adjacent PCC
in components of social processing such as updating impres-
sions (Schiller et al., 2009; Ma et al., 2011, 2012; Mende-Siedlecki
et al., 2013) and sensitivity to social outcomes (Rilling et al., 2004;
Delgado et al., 2005; Tomlin et al., 2006). This study extends these
findings by identifying a parametrically varying, socially specific,
PE signal in the Pc. The Pc has been shown to subserve a wide
range of cognitive processes, including mental imagery, episodic
memory retrieval and self-processing (for review see Cavanna
and Trimble, 2006) and is the hub of the default mode network
(Raichle et al., 2001; Buckner et al., 2008). More recently, it has

Table 2. Main effects at time of outcome

Pk vox MNI

nVox X Y Z Peak vox region (nVox) Other AAL regions> 5 voxels

Main effect of Gifters> Lotteries at time of outcome

7100 51 �58 28 Angular_R(341) Temporal_Mid_R(760), Frontal_Sup_Medial_R(524), Frontal_Sup_Medial_L(409),
Frontal_Inf_Orb_R(353), Frontal_Sup_R(328), Temporal_Inf_R(303),
Frontal_Inf_Tri_R(296), Temporal_Pole_Mid_R(234), Frontal_Mid_R(225),
Temporal_Sup_R(206), Frontal_Med_Orb_R(160), Rectus_L(157),
Temporal_Pole_Sup_R(145), Frontal_Sup_L(143), Frontal_Med_Orb_L(141),
Parietal_Inf_R(131), Frontal_Inf_Oper_R(125), Cingulum_Ant_R(118),
Rectus_R(106), Cingulum_Ant_L(79), Precentral_R(72), Hippocampus_R(68),
Amygdala_R(61), Thalamus_R(58), Insula_R(45), Supp_Motor_Area_R(35),
ParaHippocampal_R(29), Olfactory_R(21), Frontal_Sup_Orb_L(21),
Thalamus_L(20), SupraMarginal_R(19), Occipital_Mid_R(18), Fusiform_R(14),
Putamen_R(14), Frontal_Mid_Orb_R(14), Frontal_Sup_Orb_R(11), Lingual_R(7)

2495 �60 �55 16 Temporal_Mid_L(909) Angular_L(184), Temporal_Inf_L(160), Frontal_Inf_Orb_L(147),
Temporal_Pole_Sup_L(124), Frontal_Inf_Tri_L(85), Temporal_Pole_Mid_L(72),
Insula_L(42), Amygdala_L(42), Temporal_Sup_L(35), Hippocampus_L(24),
SupraMarginal_L(15), Putamen_L(9), Olfactory_L(6)

858 6 �55 40 Precuneus_R(302) Precuneus_L(226), Cingulum_Mid_R(90), Cingulum_Post_L(76),
Cingulum_Mid_L(59), Cingulum_Post_R(48)

210 48 �85 �14 Occipital_Inf_R(97)a Lingual_R(9)
174 �30 �82 �41 Cerebelum_Crus2_L(131)
173 42 �49 �20 Fusiform_R(66) Temporal_Inf_R(60), Cerebelum_Crus1_R(27), Cerebelum_6_R(20)

Main effect of Lotteries>Gifters at time of outcome

6554 �24 �79 �14 Lingual_L(445)b Occipital_Mid_L(516), Calcarine_L(460), Lingual_R(438), Occipital_Mid_R(424),
Calcarine_R(385), Occipital_Sup_R(345), Occipital_Sup_L(307), Cuneus_R(306),
Cuneus_L(273), Fusiform_R(268), Fusiform_L(219), Cerebelum_6_R(201),
Cerebelum_6_L(195), Parietal_Sup_L(149), Parietal_Sup_R(132),
Cerebelum_4_5_R(79), Cerebelum_4_5_L(71), Precuneus_L(64),
Cerebelum_Crus1_R(61), ParaHippocampal_R(42), Occipital_Inf_L(39),
Precuneus_R(27), Cerebelum_Crus1_L(23), ParaHippocampal_L(18),
Vermis_4_5(18), Occipital_Inf_R(17), Angular_R(16), Parietal_Inf_L(9)

aThe peak voxels of these clusters were in regions undefined by AAL (e.g. white matter), so the largest contributing AAL region is reported instead.
bThe reader may note that the large cluster identified by the contrast of Lotteries>Gifters contained a small amount of activity in the Pc. This was at the edge of the

cluster, which was primarily located in early visual cortex, and likely resulted from spatial smoothing. Visual inspection of the regions verified that there was no over-

lap with the region of the Pc that was parametrically modulated by Gifter SPE.
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been suggested that, the PCC (which is highly interconnected
with the Pc; Margulies et al., 2009), subserves change detection for
adapting to a changing environment (Pearson et al., 2011). Our re-
sults would suggest that the adjacent Pc may play a similar role,
with specific emphasis on the social environment.

It is notable that the region of Pc in which we find the so-
cially specific SPE signal is a distinct subregion of the Pc/PCC re-
gion in which we found a main effect of processing outcomes
related to social vs non-social targets. That the Pc is comprised
of distinct subregions with connections to distinct networks in

Table 3. Conjunctions [Gifters & Lotteries] of parametric effects

Pk vox MNI

nVox X Y Z Peak vox region (nVox) Other AAL regions>5 voxels

Clusters where BOLD signals positively correlated with social and non-social predictability

553 �60 �31 37 SupraMarginal_L(171) Parietal_Inf_L(84), Temporal_Mid_L(80), Postcentral_L(73),
Parietal_Sup_L(44), Temporal_Sup_L(27)

537 �3 �7 64 Supp_Motor_Area_L(126) Cingulum_Mid_L(164), Cingulum_Mid_R(99), Supp_Motor_Area_R(74),
Paracentral_Lobule_L(11)

289 36 �64 �8 Occipital_Inf_R(65) Temporal_Mid_R(113), Temporal_Inf_R(35), Fusiform_R(34),
Occipital_Mid_R(18)

276 �39 �70 �8 Occipital_Inf_L(45) Fusiform_L(115), Occipital_Inf_L(45), Temporal_Mid_L(29),
Temporal_Inf_L(12), Cerebelum_6_L(7)

194 21 �19 64 Precentral_R(92) Postcentral_R(74)

Clusters where BOLD signals positively correlated with social and non-social SPE

457 48 8 31 Precentral_R(40) Frontal_Mid_R(169), Frontal_Inf_Oper_R(138), Frontal_Inf_Tri_R(56)
344 36 �55 52 Angular_R(110) Parietal_Inf_R(85), Parietal_Sup_R(82), Occipital_Sup_R(12),

SupraMarginal_R(8), Occipital_Mid_R(6)
303 �51 17 34 Frontal_Inf_Oper_L(50) Precentral_L(132), Frontal_Mid_L(56), Frontal_Inf_Tri_L(31)
181 �6 14 49 Supp_Motor_Area_L(92) Supp_Motor_Area_R(50), Frontal_Sup_Medial_R(31)

Fig. 3. BOLD signals specific for learning about people. Top Left: BOLD activity in the Pc [top panel; 394 voxels, P(cluster)<0.001, whole-brain corrected, peak MNI

XYZ¼ 6�67 31] was selectively correlated with SPE (i.e. surprise) for Gifters and not SPE for Lotteries. The red-bordered overlay indicates brain regions that showed a

main effect of social outcomes—i.e. that were more active overall for Gifteroutcomes compared with Lotteryoutcomes. Statistical maps were thresholded at P< 0.005

(voxel-wise) and whole-brain cluster-correction was applied (P< 0.05; see Methods). Top Right: The bar graph shows the mean beta value for trials with low (L), medium

(M) and high (H) SPEs in the Pc (participant ROIs were independently created using a leave-one-out procedure—see Methods). Bottom: Posterior axial sections showing

the full extent of brain regions in which the BOLD signal reflected the parametric (SPE) and main effects for the contrast of [Gifters>Lotteries]. It is noteworthy that the

parametric response occurs in a distinct subregion of the area in which there is a main effect (see Results).
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the brain is quite well documented both anatomically and func-
tionally (Cavanna and Trimble, 2006; Margulies et al., 2009;
Zhang and Li, 2012), as is the interconnectivity between the Pc
and PCC. Margulies et al. (2009) identified four distinct regions
and labeled them on the basis of patterns of functional connect-
ivity arising from seeds placed around the Pc; sensorimotor, vis-
ual, cognitive and limbic. An informal comparison of the
regions we find to those of Margulies et al. (2009) suggests that
the region in which brain activity correlated with Gifter SPE
likely corresponds to their ‘cognitive’ region, whereas the region
in the PCC showing the main effect of [Gifters> Lotteries] but no
parametric modulation by Gifter SPE likely corresponds to their
‘Limbic’ region.

One possible mechanistic explanation for the socially specific
SPE signal in the Pc is that when learning about social targets,
the information about SPE in lateral fronto-parietal regions
(where we find SPE signals for both social and non-social targets,
and part of Margulies et al.’s ‘cognitive’ functional connectivity
signature) is forwarded to the Pc. Once there, SPE information
can be integrated with information from limbic systems and/or
forwarded to other regions of the social cognition network.
Another possibility is that coactivation of the limbic network and
cognitive networks resulting from the presence of novel informa-
tion about a social target creates the conditions for SPE to be rep-
resented in the Pc. These are but two possibilities of many that
future studies will need to arbitrate between.

While this article was under review, Hackel et al. (2015) pub-
lished a study with a similar design and goal, namely to identify
neural computations that subserve learning about others’ gener-
osity. In contrast to the results reported here, the authors did not
find any evidence for socially specific neural computations
related to generosity learning (compared with a computationally
matched non-social control condition). Two salient differences
in the studies may account for this discrepancy in findings. First,
Hackel et al. (2015) had participants learn whether partners were
rewarding and/or generous by receiving money (i.e. reward) as a
direct consequence of their partners’ actions. Critically, while
generosity in Hackel et al. (2015) varied orthogonally to reward
amount, it still indicated how rewarding a given partner could be
for the participant, and as such could be considered information
about each partner’s reward potential. It may be that information
about self-relevant reward potential triggers the involvement of
subcortical structures important for reward learning, and does so
equally for social and non-social entities. In contrast, our study
specifically examined learning about others in the absence of
experienced reward, to disentangle social processes from basic
reward learning. One possibility is that by having participants
learn associations between cues and behaviors, rather than cues
and rewards, we encouraged the use of more model-based forms
of learning (e.g. Gläscher et al., 2010; Doll et al., 2012). Consistent
with this idea, while Hackel et al. observed a ventral striatal
learning signal (characteristic of studies that involve learning
from experienced rewards), we do not (for either state or reward
PEs), instead we observed PE signals in regions associated with
model-based learning. A second distinction is that participants
in Hackel et al. (2015) were provided with more specific informa-
tion about the value and context of an agent’s decisions than our
participants (who only received binary information about Gifter/
Lottery behaviors). This may have induced their participants to
engage in value-based computations, which in turn may lead to
the engagement of value-sensitive neural systems. Future work
will need to investigate these questions directly.

There are some important limitations to acknowledge. First,
by design, ‘social learning’ in our task is only distinguished from

non-social learning by the presence of a face and participant
knowledge that they were viewing the behavior of real individ-
uals.6 As such, the social condition was minimally social, requir-
ing only simple computations of stimulus-outcome associativity
with little-to-none of the abstraction or complexity found in real-
world social behavior. In light of this, it is noteworthy that we
find robust main and parametric effects that are present during
social learning only, and suggests that these systems may en-
gage automatically when a social target is present. A natural
question to ask is whether more complex and/or abstract out-
come behaviors engage the same regions? We definitely believe
so, and indeed, there is evidence that surprise at more abstract
social outcomes does engage the Pc (e.g. Schiller et al., 2009;
Cloutier et al., 2011a,b; Mende-Siedlecki et al., 2013). Our study
supports and furthers these findings by demonstrating that re-
sponses in this region are socially specific and scale with the
magnitude of surprise. Future work should incorporate the ab-
stract nature of real-world social behaviors (e.g. Anita helped
Noah finish his homework) into more quantitative computa-
tional models. What we present here is a first step in a series of
many that we hope will help to bring a more nuanced and mech-
anistic understanding of computations underlying human per-
son perception.

A second limitation is that we find no regions that reflect
predictability for Gifters and not for Lotteries. Previous studies
have found signals in the dmPFC reflect the expected reward of
an action in an economic game given the other player’s likely
actions (Hampton et al., 2008) as well as other agents’ behavioral
ambiguity [i.e. the inverse of certainty (Yoshida et al., 2010); see
also (Jenkins and Mitchell, 2010)]. Additionally, signals in
dmPFC and other regions (e.g. TPJ, ATL) have been found when
participants are accessing trait representations both intention-
ally and spontaneously (e.g. Ma et al., 2011; Hassabis et al., 2014;
Welborn and Lieberman, 2015). We do note that we found a
small region of the left TP in which predictability for Gifters, but
not Lotteries, was represented. Recent work suggests the TP
play a role in storing associations between social targets and
related concepts (Todorov and Olson, 2008; Ross and Olson,
2010; Olson et al., 2013). However, because the signal we found
did not survive whole-brain cluster-correction and we did not
optimize our fMRI data collection to identify signals in the TP
(where susceptibility artifacts are strong), we only note this as
an avenue of future interest. Finally, it is also interesting to note
that we did not identify any person-specific learning signals in
the TPJ, a region consistently implicated in theory of mind proc-
esses (Saxe, 2010) and found in other studies investigation the
neural computations of social learning (e.g. Behrens et al., 2008;
Hampton et al., 2008; Boorman et al., 2013). This may be because
we did not require participants to actively consider the internal
thought processes of Gifters (i.e. ‘mentalizing’), only that they
learn the association between each Gifter and outcomes. It is
possible the TPJ is only engaged when participants are actively
‘mentalizing’.

Stepping back, our findings provide strong evidence that
learning about other people may recruit a set of specifically so-
cial neural computations distinct from those that subserve gen-
eral learning about stimulus-outcome contingencies. That
these social signals are complex and reflect computations ne-
cessary for learning, suggests that they are not simply the result
of increased attention or depth of processing. Rather, these

6 Participants were recruited through the Center for Experimental Social
Science at the California Institute of Technology, which has a strict
and explicit rule against deceiving participants.
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social neural signals may result from unique demands that the
social world places on the brain. One possibility is that repre-
senting the complex, ever-changing, multidimensionality of an-
other individual’s character may require systems that can
quickly and flexibly assign semantic associations (another puta-
tive role of the anterior temporal lobes; Olson et al., 2013) to dif-
ferent agents and social groups. In contrast to the social
contingencies of other minds, the non-social contingencies in
our world are relatively stable and mostly beholden to a gener-
alizable set of rules. This necessity for flexibility and high
dimensionality may have led us to develop specialized cortical
systems capable of handling such problems.
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